The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes

与胰岛素相比,SGLT2 抑制剂对 1 型糖尿病小鼠模型中的糖尿病骨病的影响

阅读:6
作者:Kathryn M Thrailkill, Jeffry S Nyman, R Clay Bunn, Sasidhar Uppuganti, Katherine L Thompson, Charles K Lumpkin Jr, Evangelia Kalaitzoglou, John L Fowlkes

Abstract

Skeletal co-morbidities in type 1 diabetes include an increased risk for fracture and delayed fracture healing, which are intertwined with disease duration and the presence of other diabetic complications. As such, chronic hyperglycemia is undoubtedly a major contributor to these outcomes, despite standard insulin-replacement therapy. Therefore, using the streptozotocin (STZ)-induced model of hypoinsulinemic hyperglycemia in DBA/2J male mice, we compared the effects of two glucose lowering therapies on the fracture resistance of bone and markers of bone turnover. Twelve week-old diabetic (DM) mice were treated for 9weeks with: 1) oral canagliflozin (CANA, dose range ~10-16mg/kg/day), an inhibitor of the renal sodium-dependent glucose co-transporter type 2 (SGLT2); 2) subcutaneous insulin, via minipump (INS, 0.125units/day); 3) co-therapy (CANA+INS); or 4) no treatment (STZ, without therapy). These groups were also compared to non-diabetic control groups. Untreated diabetic mice experienced increased bone resorption and significant deficits in cortical and trabecular bone that contributed to structural weakness of the femur mid-shaft and the lumbar vertebra, as determined by three-point bending and compression tests, respectively. Treatment with either canagliflozin or insulin alone only partially rectified hyperglycemia and the diabetic bone phenotype. However, when used in combination, normalization of glycemic control was achieved, and a prevention of the DM-related deterioration in bone microarchitecture and bone strength occurred, due to additive effects of canagliflozin and insulin. Nevertheless, CANA-treated mice, whether diabetic or non-diabetic, demonstrated an increase in urinary calcium loss; FGF23 was also increased in CANA-treated DM mice. These findings could herald ongoing bone mineral losses following CANA exposure, suggesting that certain CANA-induced skeletal consequences might detract from therapeutic improvements in glycemic control, as they relate to diabetic bone disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。