Mesenchymal cell interaction with ovarian cancer cells induces a background dependent pro-metastatic transcriptomic profile

间充质细胞与卵巢癌细胞的相互作用诱导了背景依赖性的促转移转录组谱

阅读:5
作者:Raphael Lis, Cyril Touboul, Najeeb M Halabi, Abishek Sainath Madduri, Denis Querleu, Jason Mezey, Joel A Malek, Karsten Suhre, Arash Rafii

Background

The cross talk between the stroma and cancer cells plays a major role in phenotypic modulation. During peritoneal carcinomatosis ovarian cancer cells interact with mesenchymal stem cells (MSC) resulting in increased metastatic ability. Understanding the transcriptomic changes underlying the phenotypic modulation will allow identification of key genes to target. However in the context of personalized medicine we must consider inter and intra tumoral heterogeneity. In this study we used a pathway-based approach to illustrate the role of cell line background in transcriptomic modification during a cross talk with MSC.

Conclusion

The contact with the mesenchymal niche increase metastatic initiation and expansion through cancer cells' transcriptome modification dependent of the cellular subtype. Personalized medicine strategy might benefit from network analysis revealing the subtype specific nodes to target to disrupt acquired pro-metastatic profile.

Methods

We used two ovarian cancer cell lines as a surrogate for different ovarian cancer subtypes: OVCAR3 for an epithelial and SKOV3 for a mesenchymal subtype. We co-cultured them with MSCs. Genome wide gene expression was determined after cell sorting. Ingenuity pathway analysis was used to decipher the cell specific transcriptomic changes related to different pro-metastatic traits (Adherence, migration, invasion, proliferation and chemoresistance).

Results

We demonstrate that co-culture of ovarian cancer cells in direct cellular contact with MSCs induces broad transcriptomic changes related to enhance metastatic ability. Genes related to cellular adhesion, invasion, migration, proliferation and chemoresistance were enriched under these experimental conditions. Network analysis of differentially expressed genes clearly shows a cell type specific pattern.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。