Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal

减少硫化氢或一氧化碳的产生对 NO 戒断引起的高血压和肾损伤的有益作用

阅读:5
作者:Sebastiaan Wesseling, Joost O Fledderus, Marianne C Verhaar, Jaap A Joles

Background and purpose

Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2 S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2 S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2 S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. Experimental approach: Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. Key

Purpose

Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2 S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2 S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2 S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. Experimental approach: Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. Key

Results

LNNA always reduced NO, decreased H2 S and increased CO after 4 weeks. PAG abolished H2 S, always enhanced CO and reduced NO, but not when used in combination with other inhibitors. SnPP always increased NO, enhanced H2 S and inhibited CO after 1 week. Rats treated with LNNA, but not PAG and SnPP, rapidly developed hypertension followed by renal dysfunction. LNNA-induced hypertension was ameliorated and renal dysfunction prevented by all additional treatments. Renal HO-1 expression was increased by LNNA in injured tubules and increased in all tubules by all other treatments. Conclusions and implications: The amelioration of LNNA-induced hypertension and renal injury by additional inhibition of H2 S and/or CO-producing enzymes appeared to be associated with secondary increases in renal CO or NO production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。