PD-L1 Mediates Dysfunction in Activated PD-1+ NK Cells in Head and Neck Cancer Patients

PD-L1 介导头颈癌患者活化 PD-1+ NK 细胞功能障碍

阅读:10
作者:Fernando Concha-Benavente, Benjamin Kansy, Jessica Moskovitz, Jennifer Moy, Uma Chandran, Robert L Ferris

Abstract

Inhibitory immune-checkpoint receptors (ICRs), including programmed death 1 (PD-1), have been characterized as exhaustion markers on T cells that infiltrate the tumor microenvironment (TME) of many cancer types, including head and neck cancer (HNC). However, expression and function of ICRs, including PD-1, on natural killer (NK) cells remains less defined. NK cells are innate immune effector cells that lyse epidermal growth factor receptor-overexpressing HNC cells via cetuximab-mediated antibody-dependent cytotoxicity. Cetuximab is clinically effective but only in 10% to 15% of patients. Therefore, it is necessary to investigate how immunomodulation with cetuximab or PD-1 blockade might enhance NK cell responses in the TME and improve monoclonal antibody therapeutic efficacy. We observed that expression of PD-1 on NK cells marks an activated phenotype, which was suppressed only after binding programmed death ligand-1 (PD-L1). HNC patients who exhibit higher circulating PD-1+ NK cells associate with better clinical outcome, and these cells are enriched in the TME. Cetuximab-mediated NK cell activation increased PD-1 expression on NK cells in vitro, which was confirmed in vivo in a prospective neoadjuvant cetuximab trial. In contrast, PD-L1 ligation of PD-1+ NK cells diminished their activation status, whereas PD-1 blockade increased cetuximab-mediated NK cell activation and cytotoxicity, but only against HNC targets with high PD-L1 expression. Therefore, blocking the PD-1-PD-L1 axis may be a useful strategy to reverse immune evasion of HNC tumors with high PD-L1 expression during cetuximab therapy by reversing NK cell dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。