Validation of a Novel Fgf10 Cre- ERT 2 Knock-in Mouse Line Targeting FGF10Pos Cells Postnatally

验证一种新型的Fgf10 Cre-ERT 2敲入小鼠品系,该品系在出生后靶向FGF10阳性细胞

阅读:1
作者:Xuran Chu ,Sara Taghizadeh ,Ana Ivonne Vazquez-Armendariz ,Susanne Herold ,Lei Chong ,Chengshui Chen ,Jin-San Zhang ,Elie El Agha ,Saverio Bellusci

Abstract

Fgf10 is a key gene during development, homeostasis and repair after injury. We previously reported a knock-in Fgf10 Cre-ERT2 line (with the Cre-ERT2 cassette inserted in frame with the start codon of exon 1), called thereafter Fgf10 Ki-v1, to target FGF10Pos cells. While this line allowed fairly efficient and specific labeling of FGF10Pos cells during the embryonic stage, it failed to target these cells after birth, particularly in the postnatal lung, which has been the focus of our research. We report here the generation and validation of a new knock-in Fgf10 Cre-ERT2 line (called thereafter Fgf10 Ki-v2) with the insertion of the expression cassette in frame with the stop codon of exon 3. Fgf10 Ki-v2/+ heterozygous mice exhibited comparable Fgf10 expression levels to wild type animals. However, a mismatch between Fgf10 and Cre expression levels was observed in Fgf10 Ki-v2/+ lungs. In addition, lung and limb agenesis were observed in homozygous embryos suggesting a loss of Fgf10 functional allele in Fgf10 Ki-v2 mice. Bioinformatic analysis shows that the 3'UTR, where the Cre-ERT2 cassette is inserted, contains numerous putative transcription factor binding sites. By crossing this line with tdTomato reporter line, we demonstrated that tdTomato expression faithfully recapitulated Fgf10 expression during development. Importantly, Fgf10 Ki-v2 mouse is capable of significantly targeting FGF10Pos cells in the adult lung. Therefore, despite the aforementioned limitations, this new Fgf10 Ki-v2 line opens the way for future mechanistic experiments involving the postnatal lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。