Novel engineered, membrane-localized variants of vascular endothelial growth factor (VEGF) protect retinal ganglion cells: a proof-of-concept study

新型工程化、膜定位的血管内皮生长因子 (VEGF) 变体保护视网膜神经节细胞:一项概念验证研究

阅读:4
作者:Junhui Shen, Ru Xiao, Jeffrey Bair, Fang Wang, Luk H Vandenberghe, Darlene Dartt, Petr Baranov, Yin Shan Eric Ng

Abstract

Endogenous vascular endothelial growth factor (VEGF-A) can protect retinal ganglion cells (RGC) from stress-induced cell death in ocular hypertensive glaucoma. To exploit the neuroprotective function of VEGF-A for therapeutic application in ocular disorders such as glaucoma while minimizing unwanted vascular side effects, we engineered two novel VEGF variants, eVEGF-38 and eVEGF-53. These variants of the diffusible VEGF-A isoform VEGF121 are expressed as dimeric concatamers and remain tethered to the cell membrane, thus restricting the effects of the engineered VEGF to the cells expressing the protein. For comparison, we tested a Myc-tagged version of VEGF189, an isoform that binds tightly to the extracellular matrix and heparan sulfate proteoglycans at the cell surface, supporting only autocrine and localized juxtacrine signaling. In human retinal endothelial cells (hREC), expression of eVEGF-38, eVEGF-53, or VEGF189 increased VEGFR2 phosphorylation without increasing expression of pro-inflammatory markers, relative to VEGF165 protein and vector controls. AAV2-mediated transduction of eVEGF-38, eVEGF-53, or VEGF189 into primary mouse RGC promoted synaptogenesis and increased the average total length of neurites and axons per RGC by ~ 12-fold, an increase that was mediated by VEGFR2 and PI3K/AKT signaling. Expression of eVEGF-38 in primary RGC enhanced expression of genes associated with neuritogenesis, axon outgrowth, axon guidance, and cell survival. Transduction of primary RGC with any of the membrane-associated VEGF constructs increased survival both under normal culture conditions and in the presence of the cytotoxic chemicals H2O2 (via VEGFR2/PI3K/AKT signaling) and N-methyl-D-aspartate (via reduced Ca2+ influx). Moreover, RGC number was increased in mouse embryonic stem cell-derived retinal organoid cultures transduced with the eVEGF-53 construct. The novel, engineered VEGF variants eVEGF-38 and eVEGF-53 show promise as potential therapeutics for retinal RGC neuroprotection when delivered using a gene therapy approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。