Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia

脊髓背角中激活的小胶质细胞和神经元之间的串扰导致应激性痛觉过敏

阅读:5
作者:Jian Qi, Chen Chen, Qing-Xi Meng, Yan Wu, Haitao Wu, Ting-Bao Zhao

Abstract

Stress has been shown to enhance pain sensitivity resulting in stress-induced hyperalgesia. However, the underlying mechanisms have yet to be elucidated. Using single-prolonged stress combined with Complete Freund's Adjuvant injection model, we explored the reciprocal regulatory relationship between neurons and microglia, which is critical for the maintenance of posttraumatic stress disorder (PTSD)-induced hyperalgesia. In our assay, significant mechanical allodynia was observed. Additionally, activated neurons in spinal dorsal horn were observed by analysis of Fos expression. And, microglia were also significantly activated with the presence of increased Iba-1 expression. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or minocycline (a specific microglia inhibitor) attenuated mechanical allodynia. Moreover, intrathecal administration of c-fos ASO significantly suppressed the activation of neurons and microglia. Interestingly, inhibition of microglia activation by minocycline significantly suppressed the activation of both neurons and microglia in spinal dorsal horn. P38 inhibitor SB203580 suppressed IL-6 production, and inhibition of IL-6 receptor (IL-6R) activation by tocilizumab suppressed Fos expression. Together, our data suggest that the presence of a "crosstalk" between activated microglia and neurons in the spinal dorsal horn, which might contribute to the stress-induced hyperactivated state, leading to an increased pain sensitivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。