Cellular network modeling and single cell gene expression analysis reveals novel hepatic stellate cell phenotypes controlling liver regeneration dynamics

细胞网络建模和单细胞基因表达分析揭示控制肝再生动力学的新型肝星状细胞表型

阅读:7
作者:Daniel Cook, Sirisha Achanta, Jan B Hoek, Babatunde A Ogunnaike, Rajanikanth Vadigepalli

Background

Recent

Conclusions

Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these phenotypes control liver regeneration responses.

Results

We develop a mathematical model describing contributions of HSC functional phenotype populations to liver regeneration and test model predictions through isolation and transcriptional characterization of single HSCs. We identify and characterize four HSC transcriptional states contributing to liver regeneration, two of which are described for the first time in this work. We show that HSC state populations change in vivo in response to acute challenges (in this case, 70% partial hepatectomy) and chronic challenges (chronic ethanol consumption). Our results indicate that HSCs influence the dynamics of liver regeneration through steady-state tissue preconditioning prior to an acute insult and through dynamic control of cell state balances. Furthermore, our modeling approach provides a framework to understand how balances among cell states influence tissue dynamics. Conclusions: Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these phenotypes control liver regeneration responses.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。