Pentamethoxyflavanone regulates macrophage polarization and ameliorates sepsis in mice

五甲氧基黄烷酮调节巨噬细胞极化并改善小鼠脓毒症

阅读:6
作者:Lili Feng, Pingping Song, Hang Zhou, Ang Li, Yuxiang Ma, Xiong Zhang, Hailiang Liu, Ge Xu, Yang Zhou, Xuefeng Wu, Yan Shen, Yang Sun, Xudong Wu, Qiang Xu

Abstract

Macrophages, owning variable phenotypes and diverse functions, were becoming the target cells in inflammatory, infectious and autoimmune diseases. In the present study, we evaluated the effect of 5,7,3',4',5'-pentamethoxyflavanone (abbreviated as PMFA), a kind of flavonoid, on macrophage polarization, and investigated the underlying mechanism. We found that PMFA significantly inhibited M1 macrophage polarization and diminished the proinflammatory cytokines, meanwhile it greatly enhanced M2 macrophage related molecules. Moreover, PMFA facilitated the phenotype shift from M1 to M2. However, PMFA only slightly inhibited the activation of T and B cells. Further researches showed that the mechanisms can be attributed to PMFA's down-regulation on p-STAT1 and up-regulation on p-STAT6, the pivotal regulatory molecules for M1 and M2 polarization, respectively. In addition, PMFA ameliorated LPS- and cecal ligation and puncture (CLP)-induced sepsis in mice, as assessed by the raise of survival rate, descend of tissue damage and bronchoalveolar lavage fluid (BALF) cytokines. PMFA significantly decreased the expression of IL-1β, IL-6 and TNF-α and reduced the infiltration of M1 macrophages in lung. As expected, adoptive transfer of PMFA-pretreated M1 macrophages significantly increased survival rate of LPS-challenged mice compared with control mice. Taken together, the results indicate that PMFA regulates macrophage polarization via targeting the STAT1/STAT6 signals and its potential use in treatment of inflammatory disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。