Circular RNA circ-RCCD promotes cardiomyocyte differentiation in mouse embryo development via recruiting YY1 to the promoter of MyD88

环状RNA circ-RCCD通过募集YY1至MyD88启动子促进小鼠胚胎发育中的心肌细胞分化

阅读:6
作者:Yiwen Liu, Jianfang Gao, Min Xu, Qianqian Zhou, Zhongxiao Zhang, Jiaxin Ye, Rui Li

Abstract

Congenital heart disease (CHD) is the most common birth defect, affecting approximately 1% of live births. Genetic and environmental factors are leading factors to CHD, but the mechanism of CHD pathogenesis remains unclear. Circular RNAs (circRNAs) are kinds of endogenous non-coding RNAs (ncRNAs) involved in a variety of physiological and pathological processes, especially in heart diseases. In this study, three significant differently expressed circRNA between maternal embryonic day (E) E13 and E17 was found by microarray assay. Among them, the content of circ-RCCD increases with the development of heart and was enriched in primary cardiomyocytes of different species, which arouses our attention. Functional experiments revealed that inhibition of circ-RCCD dramatically suppressed the formation of beating cell clusters, the fluorescence intensity of cardiac differentiation marker MF20, and the expression of the myocardial-specific markers CTnT, Mef2c, and GATA4. Next, we found that circ-RCCD was involved in cardiomyocyte differentiation through negative regulation of MyD88 expression. Further experiments proved that circ-RCCD inhibited MyD88 levels by recruiting YY1 to the promoter of MyD88; circ-RCCD inhibited nuclear translocation of YY1. These results reported that circ-RCCD promoted cardiomyocyte differentiation by recruiting YY1 to the promoter of MyD88. And, this study provided a potential role and molecular mechanism of circ-RCCD as a target for the treatment of CHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。