Dynamics of the sealing zone in cultured osteoclasts

培养破骨细胞的密封区动力学

阅读:7
作者:Sarit Batsir, Benjamin Geiger, Zvi Kam

Abstract

Bone resorption by osteoclasts (OCs) depends on the formation and stability of the sealing zone (SZ), a peripheral belt of actin and integrin-based podosomes. Recent studies demonstrated that the SZ is a highly dynamic structure, undergoing cycles of assembly and disassembly. In this study, we explored the mechanisms underlying the regulation of SZ stability and reorganization in OCs cultured on glass slides, and forming an SZ-like podosome belt (SZL). By monitoring this belt in cultured RAW264.7 cells expressing GFP-tagged actin, we show here that SZL stability is usually locally regulated, and its dissociation, occurring mostly in concave segments, is manifested in the loss of both podosome coherence, and actin belt continuity. Double labeling of cells for actin and tubulin indicated that microtubules (MTs) are mostly confined by the inner aspect of the stable SZL-associated actin belt. However, in unstable regions of the SZL, MTs tend to extend radially, across the SZL, toward the cell edge. Disruption of MTs by nocodazole induces SZ disassembly, without affecting individual podosome stability. Inspection of the MT network indicates that it is enriched along stable SZL regions, while bypassing disorganized regions. These results suggest that the SZL is stabilized by MTs flanking its inner aspect, while disruption or misalignment of MTs leads to SZL destabilization. We further demonstrate that the MT-associated protein dynamin2 is involved in the regulation of SZL stability, and dynamin2 knockdown or inactivation cause SZL destabilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。