Metabolomic profiling reveals the mechanisms underlying the nephrotoxicity of methotrexate in children with acute lymphoblastic leukemia

代谢组学分析揭示了甲氨蝶呤对急性淋巴细胞白血病患儿肾毒性的潜在机制

阅读:15
作者:Yu Cheng, Yanan Chen, Mingming Zhao, Minglu Wang, Maobai Liu, Limei Zhao

Background

Methotrexate is widely recommended as a first-line treatment for the intensive systemic and consolidation phases of childhood acute lymphoblastic leukemia. However, methotrexate-induced nephrotoxicity is a severe adverse reaction, of which the mechanisms remain unclear.

Conclusions

Our findings revealed complex metabolomic profiles and provided novel insights into the mechanism by which ferroptosis contributes to the nephrotoxic effects of methotrexate.

Methods

An untargeted metabolomics analysis of serum from childhood acute lymphoblastic leukemia patients with delayed methotrexate excretion, with or without acute kidney injury, was performed to identify altered metabolites and metabolic pathways. An independent external validation cohort and in vitro HK-2 cell assays further verified the candidate metabolites, and explored the mechanisms underlying the nephrotoxicity of methotrexate.

Results

Four metabolites showed significant differences between normal excretion and delayed excretion, seven metabolites reflected the differences between groups with or without acute kidney injury, and six pathways were finally enriched. In particular, oxidized glutathione was confirmed as a candidate metabolite involved in the toxicity of methotrexate. We further explored the role of glutathione deprivation-induced ferroptosis on methotrexate cytotoxicity, and it was found that methotrexate overload significantly reduced cell viability, triggered reactive oxygen species and intracellular Fe2+ accumulation, and altered the expression of ferroptosis-related proteins in HK-2 cells. These methotrexate-induced changes were alleviated or reversed by the administration of a ferroptosis inhibitor, further suggesting that ferroptosis promoted methotrexate-induced cytotoxicity in HK-2 cells. Conclusions: Our findings revealed complex metabolomic profiles and provided novel insights into the mechanism by which ferroptosis contributes to the nephrotoxic effects of methotrexate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。