The Conflicting Role of Caffeine Supplementation on Hyperoxia-Induced Injury on the Cerebellar Granular Cell Neurogenesis of Newborn Rats

咖啡因补充剂对新生大鼠小脑颗粒细胞神经发生高氧损伤的相互矛盾的作用

阅读:10
作者:Vivien Giszas, Evelyn Strauß, Christoph Bührer, Stefanie Endesfelder

Abstract

Preterm birth disrupts cerebellar development, which may be mediated by systemic oxidative stress that damages neuronal developmental stages. Impaired cerebellar neurogenesis affects several downstream targets important for cognition, emotion, and speech. In this study, we demonstrate that oxidative stress induced with high oxygen (80%) for three or five postnatal days (P3/P5) could significantly damage neurogenesis and proliferative capacity of granular cell precursor and Purkinje cells in rat pups. Reversal of cellular neuronal damage after recovery to room air (P15) was augmented by treatment with caffeine. However, downstream transcripts important for migration and differentiation of postmitotic granular cells were irreversibly reduced by hyperoxia, without rescue by caffeine. Protective effects of caffeine in the cerebellum were limited to neuronal survival but failed to restore important transcript signatures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。