GATA4 inhibits odontoblastic differentiation of dental pulp stem cells through targeting IGFBP3

GATA4通过靶向IGFBP3抑制牙髓干细胞向成牙本质细胞分化

阅读:12
作者:Yan Zhang, Weiwei Qiao, Yaoting Ji, Liuyan Meng

Conclusions

GATA4 inhibited odontoblastic differentiation of HDPSCs via activating the transcriptional activity of IGFBP3, identifying its promising role in regulating HDPSCs odontoblast differentiation and reparative dentinogenesis.

Methods

The change in GATA4 expression during reparative dentin formation was detected by immunohistochemistry staining. The expression of GATA4 during HDPSCs odontoblastic differentiation was detected by western blot and quantitative polymerase chain reaction. The effect of GATA4 on odontoblast differentiation was investigated following overexpression lentivirus transfection. RNA sequencing, dual luciferase assay and chromatin immunoprecipitation (CHIP) were conducted to verify downstream targets of GATA4. GATA4 overexpression lentivirus and small interference RNA targeting IGFBP3 were co-transfected to investigate the regulatory mechanism of GATA4.

Objective

The odontogenic differentiation of human dental pulp stem cells (HDPSCs) is associated with reparative dentinogenesis. Transcription factor GATA binding protein 4 (GATA4) is proved to be essential for osteoblast differentiation and bone remodeling. This study clarified the function of GATA4 in HDPSCs odontoblast differentiation.

Results

Upregulated GATA4 was observed during reparative dentin formation in vivo and the odontoblastic differentiation of HDPSCs in vitro. GATA4 overexpression suppressed the odontoblastic potential of HDPSCs, demonstrated by decreased alkaline phosphatase activity (p < 0.0001), mineralized nodules formation (p < 0.01), and odonto/osteogenic differentiation markers levels (p < 0.05). RNA sequencing revealed IGFBP3 was a potential target of GATA4. CHIP and dual luciferase assays identified GATA4 could activate IGFBP3 transcription. Additionally, IGFBP3 knockdown recovered the odontoblastic differentiation defect caused by GATA4 overexpression (p < 0.05). Conclusions: GATA4 inhibited odontoblastic differentiation of HDPSCs via activating the transcriptional activity of IGFBP3, identifying its promising role in regulating HDPSCs odontoblast differentiation and reparative dentinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。