Arabidopsis SPA2 represses seedling de-etiolation under multiple light conditions

拟南芥SPA2在多种光照条件下抑制幼苗脱黄化

阅读:6
作者:Liang Su, Peng Zhou, Lin Guo, Xiaolin Jia, Shaoci Wang, Jianwei Gao, Hongyu Li, Bin Liu, Meifang Song, Jianping Yang

Abstract

In Arabidopsis, phytochrome (phy) A, phyB, and cryptochrome 1 (cry1) are representative far-red, red, and blue light photoreceptors, respectively. Members of the SUPPRESSOR OF PHYA-105 (SPA) protein family (SPA1-SPA4) form E3 ubiquitin ligase complexes with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which mediates the degradation of photomorphogenesis-promoting factors to desensitize light signaling. SPA2 has been reported to promote seedling etiolation in the dark. However, the unique roles of SPA2 and its three functional domains in suppressing photomorphogenesis under different light conditions are largely unknown. Here, we demonstrate that overexpression of the full-length or the central coiled-coil and C-terminal WD-repeat domains of SPA2 cause hyper-etiolation phenotypes under several light conditions. The SPA2 central coiled-coil and C-terminal WD-repeat domains are necessary and sufficient for repressing seedling de-etiolation, cotyledon unfolding, and promoting hypocotyl negative gravitropism under several light conditions. Furthermore, phyA, phyB, cry1, and COP1 repress protein accumulation or nuclear translocation of SPA2 through direct interactions with its kinase-like and coiled-coil domains located in the N-terminus in response to far-red, red, and blue light treatments, respectively. Taken together, our results demonstrate that SPA2 functions under multiple light conditions; moreover, light-activated photoreceptors rapidly suppress SPA2 activity via direct interactions in response to different light treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。