A Homeostatic Shift Facilitates Endoplasmic Reticulum Proteostasis through Transcriptional Integration of Proteostatic Stress Response Pathways

稳态转变通过蛋白质稳态应激反应途径的转录整合促进内质网蛋白质稳态

阅读:5
作者:Liam Baird, Tadayuki Tsujita, Eri H Kobayashi, Ryo Funayama, Takeshi Nagashima, Keiko Nakayama, Masayuki Yamamoto

Abstract

Eukaryotic cells maintain protein homeostasis through the activity of multiple basal and inducible systems, which function in concert to allow cells to adapt to a wide range of environmental conditions. Although the transcriptional programs regulating individual pathways have been studied in detail, it is not known how the different pathways are transcriptionally integrated such that a deficiency in one pathway can be compensated by a change in an auxiliary response. One such pathway that plays an essential role in many proteostasis responses is the ubiquitin-proteasome system, which functions to degrade damaged, unfolded, or short half-life proteins. Transcriptional regulation of the proteasome is mediated by the transcription factor Nrf1. Using a conditional knockout mouse model, we found that Nrf1 regulates protein homeostasis in the endoplasmic reticulum (ER) through transcriptional regulation of the ER stress sensor ATF6. In Nrf1 conditional-knockout mice, a reduction in proteasome activity is accompanied by an ATF6-dependent downregulation of the endoplasmic reticulum-associated degradation machinery, which reduces the substrate burden on the proteasome. This indicates that Nrf1 regulates a homeostatic shift through which proteostasis in the endoplasmic reticulum and cytoplasm are coregulated based on a cell's ability to degrade proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。