Chronic Insulin Infusion Down-Regulates Circulating and Urinary Nitric Oxide (NO) Levels Despite Molecular Changes in the Kidney Predicting Greater Endothelial NO Synthase Activity in Mice

尽管肾脏的分子变化预示着小鼠内皮 NO 合酶活性增强,但慢性胰岛素输注仍下调了循环和尿液一氧化氮 (NO) 水平

阅读:4
作者:Maurice B Fluitt, Sophia Rizvi, Lijun Li, Ashley Alunan, Hwal Lee, Swasti Tiwari, Carolyn M Ecelbarger

Abstract

Insulin therapy is often needed to overcome insulin receptor resistance in type 2 diabetes; however, the impact of providing additional insulin to already hyperinsulinemic subjects is not clear. We infused male TALLYHO/Jng (TH) mice (insulin resistant) with insulin (50 U/kg·bw/d) or vehicle (control) by osmotic minipump for 14 days. One group of insulin-infused mice was switched to 4% NaCl diet (high-sodium diet, HSD) in the second week. Blood chemistry revealed a significantly higher anion gap and blood sodium concentrations with insulin infusion, i.e., relative metabolic acidosis. Systolic BP and heart rate were slightly (~5 mm Hg) higher in insulin-infused versus control mice. HSD resulted in a modest and transient rise in mean arterial blood pressure (BP), relative to control or insulin-infused, normal-NaCl-fed mice. In kidney, insulin infusion: (1) increased total and phosphorylated (serine-1177) endothelial nitric oxide synthase (eNOS) band densities; (2) reduced band density of the uncoupled form of eNOS; and (3) increased renal homogenate nitric oxide synthase (NOS) activity. Despite this, plasma and urine levels of nitrates plus nitrites (NOx) fell with insulin infusion, by day 14 (40⁻50%) suggesting worsening of resistance. Overall, insulin infusion ramps up the cellular means in kidney to increase vasodilatory and natriuretic NO, but in the long term may be associated with worsening of insulin receptor resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。