Neonatal Oxidative Stress Impairs Cortical Synapse Formation and GABA Homeostasis in Parvalbumin-Expressing Interneurons

新生儿氧化应激损害表达小清蛋白的中间神经元的皮质突触形成和 GABA 稳态

阅读:9
作者:Till Scheuer, Stefanie Endesfelder, Elena Auf dem Brinke, Christoph Bührer, Thomas Schmitz

Abstract

Neonatal brain injury is often caused by preterm birth. Brain development is vulnerable to increased environmental stress, including oxidative stress challenges. Due to a premature change of the fetal living environment from low oxygen in utero into postnatal high-oxygen room air conditions ex utero, the immature preterm brain is exposed to a relative hyperoxia, which can induce oxidative stress and impair neuronal cell development. To simulate the drastic increase of oxygen exposure in the immature brain, 5-day-old C57BL/6 mice were exposed to hyperoxia (80% oxygen) for 48 hours or kept in room air (normoxia, 21% oxygen) and mice were analyzed for maturational alterations of cortical GABAergic interneurons. As a result, oxidative stress was indicated by elevated tyrosine nitration of proteins. We found perturbation of perineuronal net formation in line with decreased density of parvalbumin-expressing (PVALB) cortical interneurons in hyperoxic mice. Moreover, maturational deficits of cortical PVALB+ interneurons were obtained by decreased glutamate decarboxylase 67 (GAD67) protein expression in Western blot analysis and lower gamma-aminobutyric acid (GABA) fluorescence intensity in immunostaining. Hyperoxia-induced oxidative stress affected cortical synaptogenesis by decreasing synapsin 1, synapsin 2, and synaptophysin expression. Developmental delay of synaptic marker expression was demonstrated together with decreased PI3K-signaling as a pathway being involved in synaptogenesis. These results elucidate that neonatal oxidative stress caused by increased oxygen exposure can lead to GABAergic interneuron damage which may serve as an explanation for the high incidence of psychiatric and behavioral alterations found in preterm infants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。