Myostatin Deficiency Enhances Antioxidant Capacity of Bovine Muscle via the SMAD-AMPK-G6PD Pathway

肌生长抑制素缺乏通过 SMAD-AMPK-G6PD 通路增强牛肌的抗氧化能力

阅读:8
作者:Lin Zhu, Xueqiao Wang, Zhuying Wei, Miaomiao Yang, Xinyu Zhou, Jiaru Lei, Chunling Bai, Guanghua Su, Xuefei Liu, Lei Yang, Guangpeng Li

Abstract

During exercise, the body's organs and skeletal muscles produce reactive oxygen species (ROS). Excessive ROS can destroy cellular lipids, sugars, proteins, and nucleotides and lead to cancer. The production of nicotinamide adenine dinucleotide phosphate (NADPH) by the pentose phosphate pathway (PPP) is an auxiliary process of the cellular antioxidant system that supplements the reducing power of glutathione (GSH) to eliminate ROS in the cell. Myostatin (MSTN) is mainly expressed in skeletal muscle and participates in the regulation of skeletal muscle growth and development. Loss of MSTN leads to muscular hypertrophy, and MSTN deficiency upregulates glycolysis. However, the effect of MSTN on the PPP has not been reported. This study investigated the effect of MSTN on muscle antioxidant capacity from a metabolic perspective. We found that reducing MSTN modulates AMP-activated protein kinase (AMPK), a key molecule in cellular energy metabolism that directly regulates glucose metabolism through phosphorylation. Downregulation of MSTN promotes tyrosine modification of glucose-6-phosphate-dehydrogenase (G6PD) by AMPK and is regulated by the Smad signaling pathway. The Smad2/3 complex acts as a transcription factor to inhibit the AMPK expression. These results suggest that reduced MSTN expression inhibits the Smad signaling pathway, promotes AMPK expression, enhances the activity of G6PD enzyme, and enhances the antioxidant capacity of nonenzymatic GSH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。