Sensing Acute Cellular Rejection in Liver Transplant Patients Using Liver-Derived Extracellular Particles: A Prospective, Observational Study

利用肝源性细胞外颗粒检测肝移植患者的急性细胞排斥反应:一项前瞻性观察研究

阅读:2
作者:Kaan Kamali ,Moritz Schmelzle ,Can Kamali ,Philipp Brunnbauer ,Katrin Splith ,Annekatrin Leder ,Nadja Berndt ,Karl-Herbert Hillebrandt ,Nathanael Raschzok ,Linda Feldbrügge ,Matthäus Felsenstein ,Joseph Gaßner ,Paul Ritschl ,Georg Lurje ,Wenzel Schöning ,Christian Benzing ,Johann Pratschke ,Felix Krenzien

Abstract

Acute cellular rejection (ACR) after liver transplantation (LT) goes along with allograft dysfunction, which is diagnosed by liver biopsy and concomitant histological analysis, representing the gold standard in clinical practice. Yet, liver biopsies are invasive, costly, time-intensive and require expert knowledge. Herein we present substantial evidence that blood plasma residing peripheral liver-derived extracellular particles (EP) could be employed to diagnose ACR non-invasively. In vitro experiments showed organ-specific EP release from primary human hepatocytes under immunological stress. Secondly, analysis of consecutive LT patients (n=11) revealed significant heightened EP concentrations days before ACR. By conducting a diagnostic accuracy study (n = 69, DRKS00011631), we explored the viability of using EP as a liquid biopsy for diagnosing ACR following LT. Consequently, novel EP populations in samples were identified using visualization of t-distributed stochastic neighbor embedding (viSNE) and self-organizing maps (FlowSOM) algorithms. As a result, the ASGR1+CD130+Annexin V+ EP subpopulation exhibited the highest accuracy for predicting ACR (area under the curve: 0.80, 95% confidence interval [CI], 0.70-0.90), with diagnostic sensitivity and specificity of 100% (95% CI, 81.67-100.0%) and 68.5% (95% CI, 55.3-79.3%), respectively. In summary, this new EP subpopulation presented the highest diagnostic accuracy for detecting ACR in LT patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。