The Abundance of Trace Elements in Human Bone Relative to Bone Type and Bone Pathology

人体骨骼中微量元素的丰度与骨骼类型和骨骼病理的关系

阅读:8
作者:Rachel M Coyte, Jennifer S Harkness, Thomas H Darrah

Abstract

As the global population ages and the proportion of individuals afflicted with musculoskeletal disease spirals upward, there is an increasing interest in understanding and preventing bone-related diseases. Bone diseases, such as osteoporosis and osteoarthritis, are known to be influenced by a variety of factors including age, gender, nutrition, and genetics, but are also inherently linked to the human body's ability to produce biominerals of suitable quality. Because the crystal lattice structure and mineralogy of bone hydroxyapatite is surprisingly analogous to geological hydroxyapatite, trace element levels and exposure have long been proposed to influence the structure of biominerals as they do geological minerals (e.g., strontium substitution changes the crystal lattice of bone minerals, while toxic lead disrupt bone cellular processes leading to bone disease). Here, we explore the distribution of trace elements in human bones to evaluate the distribution of these elements with respect to bone type (cortical vs. trabecular) and bone disease (osteoarthritis vs. osteoporosis). We find higher concentrations of many metabolically active transition metals, as well as lead, in cortical bone compared to trabecular bone. When compared to patients who have osteoarthritis, and thus presumably normal bone minerals, osteoporosis patients have higher concentrations of scandium and chromium (Cr) in trabecular bone, and Cr and lead in cortical bone. Lower concentrations of barium and titanium are associated with osteoporotic trabecular bone. This survey is an exploratory cross-sectional geochemical examination of several trace element concentrations previously understudied in human bone minerals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。