Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae

噬菌体BUCT631对K1型肺炎克雷伯菌的溶解特性及其对蜡螟幼虫的治疗效果

阅读:4
作者:Pengjun Han, Mingfang Pu, Yahao Li, Huahao Fan, Yigang Tong

Abstract

Severe infections caused by multidrug-resistant Klebsiella pneumoniae (K. pneumoniae) highlight the need for new therapeutics with activity against this pathogen. Phage therapy is an alternative treatment approach for multidrug-resistant K. pneumoniae infections. Here, we report a novel bacteriophage (phage) BUCT631 that can specifically lyse capsule-type K1 K. pneumoniae. Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K. pneumoniae and form an obvious halo ring, and it had relatively favorable thermal stability (4-50 ​°C) and pH tolerance (pH ​= ​4-12). In addition, the optimal multiplicity of infection (MOI) of phage BUCT631 was 0.01, and the burst size was approximately 303 ​PFU/cell. Genomic analysis showed that phage BUCT631 has double-stranded DNA (total length of 44,812 bp) with a G ​+ ​C content of 54.1%, and the genome contains 57 open reading frames (ORFs) and no virulence or antibiotic resistance related genes. Based on phylogenetic analysis, phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae. In addition, phage BUCT631 could quickly inhibit the growth of K. pneumoniae within 2 ​h in vitro and significantly elevated the survival rate of K. pneumoniae infected Galleria mellonella larvae from 10% to 90% in vivo. These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K. pneumoniae infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。