Conclusions
The overexpression of 33-kDa ANXA3 is involved in the clinical progression of hepatocarcinoma and in the malignancy, angiogenesis and apoptosis of hepatocarcinoma cells. It is of potential use in hepatocarcinoma diagnosis and treatment.
Methods
The expressions of ANXA3, CRKL, Rac1, c-Myc and pAkt were analyzed in hepatocarcinoma specimens by Western blotting. The biological function of 33-kDa ANXA3 in the growth, metastasis, apoptosis, angiogenesis, chemoresistance of hepatocarcinoma cells with the underlying molecular mechanism were investigated using gain-of-function strategy in vitro or in vivo.
Results
33-kDa ANXA3 was remarkably upregulated in tumor tissues compared with corresponding normal liver tissues of hepatocarcinoma patients. Its stable knockdown decreased the in vivo tumor growing velocity and malignancy of hepatocarcinoma HepG2 cells transplanted in nude mice. The in vitro experimental results indicated 33-kDa ANXA3 knockdown suppressed the proliferation, colony forming, migration and invasion abilities of HepG2 cells through downregulating CRKL, Rap1b, Rac1, pMEK, pERK2 and c-Myc in ERK pathway; inhibited angiogenesisability of HepG2 cells through inactivating PI3K/Akt-HIF pathway; induced apoptosis and enhanced chemoresistance of HepG2 cells through increasing Bax/decreasing Bcl-2 expressions and inactivating caspase 9/caspase 3 in intrinsic apoptosis pathway. Accordingly, CRKL, Rac1, c-Myc and pAkt were also upregulated in hepatocarcinoma patients ' tumor tissues compared with corresponding normal liver tissues. Conclusions: The overexpression of 33-kDa ANXA3 is involved in the clinical progression of hepatocarcinoma and in the malignancy, angiogenesis and apoptosis of hepatocarcinoma cells. It is of potential use in hepatocarcinoma diagnosis and treatment.
