Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics

低粘度聚二甲基硅氧烷树脂,用于轻松实现弹性微流体的 3D 打印

阅读:4
作者:Elyse Fleck, Charlise Keck, Karolina Ryszka, Emma DeNatale, Joseph Potkay

Abstract

Microfluidics is a rapidly advancing technology with expansive applications but has been restricted by slow, laborious fabrication techniques for polydimethylsiloxane (PDMS)-based devices. Currently, 3D printing promises to address this challenge with high-resolution commercial systems but is limited by a lack of material advances in generating high-fidelity parts with micron-scale features. To overcome this limitation, a low-viscosity, photopolymerizable PDMS resin was formulated with a methacrylate-PDMS copolymer, methacrylate-PDMS telechelic polymer, photoabsorber, Sudan I, photosensitizer, 2-isopropylthioxanthone, and a photoinitiator, 2,4,6-trimethyl benzoyl diphenylphosphine oxide. The performance of this resin was validated on a digital light processing (DLP) 3D printer, an Asiga MAX X27 UV. Resin resolution, part fidelity, mechanical properties, gas permeability, optical transparency, and biocompatibility were investigated. This resin produced resolved, unobstructed channels as small as 38.4 (±5.0) µm tall and membranes as thin as 30.9 (±0.5) µm. The printed material had an elongation at break of 58.6% ± 18.8%, Young's modulus of 0.30 ± 0.04 MPa, and was highly permeable to O2 (596 Barrers) and CO2 (3071 Barrers). Following the ethanol extraction of the unreacted components, this material demonstrated optical clarity and transparency (>80% transmission) and viability as a substrate for in vitro tissue culture. This paper presents a high-resolution, PDMS 3D-printing resin for the facile fabrication of microfluidic and biomedical devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。