WTX inhibits gastric cancer migration through the reversal of epithelial-mesenchymal transition

WTX 通过逆转上皮-间质转化抑制胃癌迁移

阅读:6
作者:Danli Ye, Wenxia Ma, Jiahui Xu, Guifang Zhu, Deying Liu, Chun Liu, Yanqing Ding, Qingling Zhang

Abstract

The aim of the present study was to investigate whether the expression of Wilms' tumor gene on X chromosome (WTX) affected the epithelial-mesenchymal transition (EMT) process and migration of gastric cancer cells. Stable WTX-overexpressing AGS cells (AGS.W) were established and analyzed by flow cytometry. The efficiency of the overexpression was verified by fluorescence microscopy, reverse transcription-quantitative polymerase chain reaction and western blotting. To analyze the expression of EMT-associated proteins, western blotting and immunofluorescence assays were performed. The migratory capability of the cells was detected by Transwell wound-healing assays, respectively. Compared with that of the control cells (AGS.veh), WTX expression was notably increased at mRNA (P<0.05) and protein levels (P<0.05) in the AGS.W gastric cancer cells. Morphological observations indicated that AGS.W cells transformed into spindle shapes, compared to AGS.veh cells, which maintained round or oval shapes. Furthermore, western blotting and immunofluorescence validated that the expression level of the epithelial marker epithelial-cadherin was significantly increased, whereas the expression levels of the mesenchymal markers neural-cadherin, β-catenin and vimentin were significantly decreased in the AGS.W cells compared with those in the AGS.veh cells. In addition, the overexpression of WTX decreased the migratory ability of AGS.W cells compared with AGS.veh cells. Exogenous expression of WTX inhibited gastric cancer cell migration by reversing EMT. The results of the present study describe a molecular feature that may be a promising target for future gastric cancer therapy strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。