TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor

TGFβ2 诱导的生物工程小梁网流出改变可通过 rho 相关激酶抑制剂来抵消

阅读:5
作者:Karen Y Torrejon, Ellen L Papke, Justin R Halman, Magnus Bergkvist, John Danias, Susan T Sharfstein, Yubing Xie

Abstract

Members of the transforming growth factor beta (TGFβ) cytokine family have long been associated with affecting several cellular functions, including cell proliferation, differentiation and extracellular matrix (ECM) turnover. Of particular interest to this work, TGFβ2 has been linked to most types of glaucomas as a potential fibrotic agent that can cause elevation of intraocular pressure (IOP). Given that the trabecular meshwork (TM) provides most of aqueous humor outflow resistance in the eye, an in vitro bioengineered human TM (HTM) model has been created and validated by analyzing effects of TGFβ2 on transcellular pressure changes and outflow facility. These changes were correlated with several biological alterations induced by this cytokine, including ECM production and overexpression of HTM-marker myocillin. Furthermore, this TM model has been used to extend current knowledge of gene expression of cytokines involved in TGFβ-induced ECM turnover over time. In particular, the ability for a ROCK-inhibitor to diminish the effect of TGFβ on TM was demonstrated. This work supports the notion that anti-fibrotic activities of ROCK-inhibitors could counteract the elevation of IOP and increased strain observed in glaucomatous TM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。