Alpha-lipoic acid regulates the autophagy of vascular smooth muscle cells in diabetes by elevating hydrogen sulfide level

硫辛酸通过提高硫化氢水平调节糖尿病血管平滑肌细胞自噬

阅读:5
作者:Xuan Qiu, Kuanzhi Liu, Lin Xiao, Sheng Jin, Jinghui Dong, Xu Teng, Qi Guo, Yuhong Chen, Yuming Wu

Abstract

Dysfunctional vascular smooth muscle (VSM) plays a vital role in the process of atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Alpha-lipoic acid (ALA) can prevent the altered VSM induced by diabetes. However, the precise mechanism underlying the beneficial effect of ALA is not well understood. This study aimed to determine whether ALA ameliorates VSM function by elevating hydrogen sulfide (H2S) level in diabetes and whether this effect is associated with regulation of autophagy of VSM cells (VSMCs). We found decreased serum H2S levels in Chinese patients and rats with type 2 diabetes mellitus (T2DM). ALA treatment could increase H2S level, which reduced the autophagy-related index and activation of the 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, thereby protecting vascular function in rats with T2DM. Propargylglycine (PPG), a cystathionine-γ-lyase inhibitor, could weaken the ALA effect. In cultured VSMCs, high glucose level also reduced H2S level, upregulated the autophagy-related index and activated the AMPK/mTOR pathway, which were reversed by concomitant application of sodium hydrosulfide (NaHS, an H2S donor) or ALA. The protective effect of NaHS or ALA was attenuated by rapamycin (an autophagy activator), 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (an AMPK activator) or PPG. In contrast, Compound C (an AMPK inhibitor) enhanced the effect of ALA or NaHS. ALA may have a protective effect on VSMCs in T2DM by elevating H2S level and downregulating autophagy via the AMPK/mTOR pathway. This study provides a new target for addressing diabetic macroangiopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。