Tyrosine phosphorylation differentially fine-tunes ionotropic and metabotropic responses of human α7 nicotinic acetylcholine receptor

酪氨酸磷酸化差异微调人类 α7 烟碱乙酰胆碱受体的离子型和代谢型反应

阅读:4
作者:Juan Facundo Chrestia, Ariana Bruzzone, María Del Carmen Esandi, Cecilia Bouzat

Abstract

The α7 nicotinic acetylcholine receptor is involved in neurological, neurodegenerative, and inflammatory disorders. It operates both as a ligand-gated cationic channel and as a metabotropic receptor in neuronal and non-neuronal cells. As protein phosphorylation is an important cell function regulatory mechanism, deciphering how tyrosine phosphorylation modulates α7 dual ionotropic/metabotropic molecular function is required for understanding its integral role in physiological and pathological processes. α7 single-channel activity elicited by ACh appears as brief isolated openings and less often as episodes of few openings in quick succession. The reduction of phosphorylation by tyrosine kinase inhibition increases the duration and frequency of activation episodes, whereas the inhibition of phosphatases has the opposite effect. Removal of two tyrosine residues at the α7 intracellular domain recapitulates the effects mediated by tyrosine kinase inhibition. The tyrosine-free mutant receptor shows longer duration-activation episodes, reduced desensitization rate and significantly faster recovery from desensitization, indicating that phosphorylation decreases α7 channel activity by favoring the desensitized state. However, the mutant receptor is incapable of triggering ERK1/2 phosphorylation in response to the α7-agonist. Thus, while tyrosine phosphorylation is absolutely required for α7-triggered ERK pathway, it negatively modulates α7 ionotropic activity. Overall, phosphorylation/dephosphorylation events fine-tune the integrated cell response mediated by α7 activation, thus having a broad impact on α7 cholinergic signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。