Reflectance spectroscopy as a promising tool for 'sensing' metals in hyperaccumulator plants

反射光谱法是“感知”超积累植物中金属的有前途的工具

阅读:4
作者:Imam Purwadi, Peter D Erskine, Antony van der Ent

Abstract

The VNIR reflectance spectra of nickel hyperaccumulator plant leaves have spectral variations due to high nickel concentrations and this property could potentially be used for discovery of these plants. Hyperaccumulator plants accumulate high concentrations of certain metals, including manganese, cobalt, or nickel. Of these metals, the divalent ions of nickel have three absorption bands in the visible to near-infrared region which may cause variations in the spectral reflectance of nickel hyperaccumulator plant leaves, but this has not been investigated previously. In this shortproof-of-concept study, the spectral reflectance of eight different nickel hyperaccumulator plant species leaves were subjected to visible and near-infrared and shortwave infrared (VNIR-SWIR) reflectance spectrum measurements in dehydrated state, and for one species, it was also assessed in hydrated state. Nickel concentrations in the plant leaves were determined with other methods and then correlated to the spectral reflectance data. Spectral variations centred at 1000 ± 150 nm were observed and had R-values varying from 0.46 to 0.96 with nickel concentrations. The extremely high nickel concentrations in nickel hyperaccumulator leaves reshape their spectral reflectance features, and the electronic transition of nickel-ions directly contributes to absorption at ~ 1000 nm. Given that spectral variations are correlated with nickel concentrations it make VNIR-SWIR reflectance spectrometry a potential promising technique for discovery of hyperaccumulator plants, not only in the laboratory or herbarium, but also in the field using drone-based platforms. This is a preliminary study which we hope will instigate further detailed research on this topic to validate the findings and to explore possible applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。