Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for NLRP1 Inflammasome Activation

功能和进化分析表明蛋白水解是 NLRP1 炎症小体激活的一般机制

阅读:5
作者:Joseph Chavarría-Smith, Patrick S Mitchell, Alvin M Ho, Matthew D Daugherty, Russell E Vance

Abstract

Inflammasomes are cytosolic multi-protein complexes that initiate immune responses to infection by recruiting and activating the Caspase-1 protease. Human NLRP1 was the first protein shown to form an inflammasome, but its physiological mechanism of activation remains unknown. Recently, specific variants of mouse and rat NLRP1 were found to be activated upon N-terminal cleavage by the anthrax lethal factor protease. However, agonists for other NLRP1 variants, including human NLRP1, are not known, and it remains unclear if they are also activated by proteolysis. Here we demonstrate that two mouse NLRP1 paralogs (NLRP1AB6 and NLRP1BB6) are also activated by N-terminal proteolytic cleavage. We also demonstrate that proteolysis within a specific N-terminal linker region is sufficient to activate human NLRP1. Evolutionary analysis of primate NLRP1 shows the linker/cleavage region has evolved under positive selection, indicative of pathogen-induced selective pressure. Collectively, these results identify proteolysis as a general mechanism of NLRP1 inflammasome activation that appears to be contributing to the rapid evolution of NLRP1 in rodents and primates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。