CHANGE-seq reveals genetic and epigenetic effects on CRISPR-Cas9 genome-wide activity

CHANGE-seq 揭示了遗传和表观遗传对 CRISPR-Cas9 全基因组活性的影响

阅读:4
作者:Cicera R Lazzarotto, Nikolay L Malinin, Yichao Li, Ruochi Zhang, Yang Yang, GaHyun Lee, Eleanor Cowley, Yanghua He, Xin Lan, Kasey Jividen, Varun Katta, Natalia G Kolmakova, Christopher T Petersen, Qian Qi, Evgheni Strelcov, Samantha Maragh, Giedre Krenciute, Jian Ma, Yong Cheng, Shengdar Q Tsai

Abstract

Current methods can illuminate the genome-wide activity of CRISPR-Cas9 nucleases, but are not easily scalable to the throughput needed to fully understand the principles that govern Cas9 specificity. Here we describe 'circularization for high-throughput analysis of nuclease genome-wide effects by sequencing' (CHANGE-seq), a scalable, automatable tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. We applied CHANGE-seq to 110 single guide RNA targets across 13 therapeutically relevant loci in human primary T cells and identified 201,934 off-target sites, enabling the training of a machine learning model to predict off-target activity. Comparing matched genome-wide off-target, chromatin modification and accessibility, and transcriptional data, we found that cellular off-target activity was two to four times more likely to occur near active promoters, enhancers and transcribed regions. Finally, CHANGE-seq analysis of six targets across eight individual genomes revealed that human single-nucleotide variation had significant effects on activity at ~15.2% of off-target sites analyzed. CHANGE-seq is a simplified, sensitive and scalable approach to understanding the specificity of genome editors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。