Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils

由于β2整合素依赖性巨噬细胞吞噬凋亡中性粒细胞的功能受损,Vav3-/-小鼠出现伤口愈合缺陷

阅读:4
作者:Anca Sindrilaru, Thorsten Peters, Jürgen Schymeinsky, Tsvetelina Oreshkova, Honglin Wang, Anne Gompf, Francesca Mannella, Meinhard Wlaschek, Cord Sunderkötter, Karl Lenhard Rudolph, Barbara Walzog, Xosé R Bustelo, Klaus D Fischer, Karin Scharffetter-Kochanek

Abstract

Vav proteins are guanine-nucleotide exchange factors implicated in leukocyte functions by relaying signals from immune response receptors and integrins to Rho-GTPases. We here provide first evidence for a role of Vav3 for beta(2)-integrins-mediated macrophage functions during wound healing. Vav3(-/-) and Vav1(-/-)/Vav3(-/-) mice revealed significantly delayed healing of full-thickness excisional wounds. Furthermore, Vav3(-/-) bone marrow chimeras showed an identical healing defect, suggesting that Vav3 deficiency in leukocytes, but not in other cells, is causal for the impaired wound healing. Vav3 was required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Immunoprecipitation and confocal microscopy revealed Vav3 activation and colocalization with beta(2)-integrins at the macrophage membrane upon adhesion to ICAM-1. Moreover, local injection of Vav3(-/-) or beta(2)-integrin(CD18)(-/-) macrophages into wound margins failed to restore the healing defect of Vav3(-/-) mice, suggesting Vav3 to control the beta(2)-integrin-dependent formation of a functional phagocytic synapse. Impaired phagocytosis of apoptotic neutrophils by Vav3(-/-) macrophages was causal for their reduced release of active transforming growth factor (TGF)-beta(1), for decreased myofibroblasts differentiation and myofibroblast-driven wound contraction. TGF-beta(1) deficiency in Vav3(-/-) macrophages was causally responsible for the healing defect, as local injection of either Vav3-competent macrophages or recombinant TGF-beta(1) into wounds of Vav3(-/-) mice fully rescued the delayed wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。