Discovery of cyclohexadepsipeptides with anti-Zika virus activities and biosynthesis of the nonproteinogenic building block (3S)-methyl-l-proline

发现具有抗寨卡病毒活性的环己缩肽以及非蛋白质结构单元 (3S)-甲基-l-脯氨酸的生物合成

阅读:6
作者:Bochuan Yuan, Ziwei Wu, Wei Ji, Dong Liu, Xiang Guo, Donghui Yang, Aili Fan, Hongli Jia, Ming Ma, Wenhan Lin

Abstract

The fungal cyclohexadepsipeptides destruxins (DTXs), isaridins (ISDs), and isariins (ISRs) are nonribosomal peptides whose structures include a 19-membered ring composed of five amino acid residues and one α- or β-hydroxy acid residue. These cyclohexadepsipeptides contain unusual nonproteinogenic amino acid-building blocks and possess a range of antiviral, antibacterial, and other activities. The biosynthetic gene clusters for ISDs and ISRs have not been identified, and the biosynthesis of the nonproteinogenic (3S)-methyl-l-proline residue, which is found in DTXs, ISDs, and many other natural products, lacks full characterization. In an ongoing effort to identify compounds that can inhibit the Zika virus (ZIKV), we examined the extract of marine-derived fungus Beauveria felina SX-6-22 and discovered 30 DTXs, ISDs, and ISRs (1-30) including seven new compounds (1-7). The anti-ZIKV assays showed that 9-12 and 16-18 possess inhibitory activities against ZIKV RNA replication and NS5 (nonstructural protein 5) production in ZIKV-infected A549 cells. We sequenced the genome of B. felina SX-6-22 and identified three biosynthetic gene clusters detx, isd and isr, which are responsible for the biosynthesis of DTXs, ISDs, and ISRs, respectively. Comparative analyses of the three gene clusters clarified the biosynthetic relationships among these cyclohexadepsipeptides. Finally, we characterized the entire biosynthesis of nonproteinogenic building block (3S)-methyl-l-proline. The Δ1-pyrroline-5-carboxylate reductases (P5CRs), also used in the biosynthesis of l-proline, were demonstrated to catalyze the final reduction step in (3S)-methyl-l-proline formation, suggesting potential cross talk between primary and secondary metabolisms. These results provide opportunities for biosynthetic pathway engineering to generate new anti-ZIKV cyclohexadepsipeptides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。