Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies

白色念珠菌 Sfl1/Sfl2 调控网络驱动致病微菌落的形成

阅读:9
作者:Andrew D McCall, Rohitashw Kumar, Mira Edgerton

Abstract

Candida albicans is an opportunistic fungal pathogen that can infect oral mucosal surfaces while being under continuous flow from saliva. Under specific conditions, C. albicans will form microcolonies that more closely resemble the biofilms formed in vivo than standard in vitro biofilm models. However, very little is known about these microcolonies, particularly genomic differences between these specialized biofilm structures and the traditional in vitro biofilms. In this study, we used a novel flow system, in which C. albicans spontaneously forms microcolonies, to further characterize the architecture of fungal microcolonies and their genomics compared to non-microcolony conditions. Fungal microcolonies arose from radially branching filamentous hyphae that increasingly intertwined with one another to form extremely dense biofilms, and closely resembled the architecture of in vivo oropharyngeal candidiasis. We identified 20 core microcolony genes that were differentially regulated in flow-induced microcolonies using RNA-seq. These genes included HWP1, ECE1, IHD1, PLB1, HYR1, PGA10, and SAP5. A predictive algorithm was utilized to identify ten transcriptional regulators potentially involved in microcolony formation. Of these transcription factors, we found that Rob1, Ndt80, Sfl1 and Sfl2, played a key role in microcolony formation under both flow and static conditions and to epithelial surfaces. Expression of core microcolony genes were highly up-regulated in Δsfl1 cells and down-regulated in both Δsfl2 and Δrob1 strains. Microcolonies formed on oral epithelium using C. albicans Δsfl1, Δsfl2 and Δrob1 deletion strains all had altered adhesion, invasion and cytotoxicity. Furthermore, epithelial cells infected with deletion mutants had reduced (SFL2, NDT80, and ROB1) or enhanced (SFL2) immune responses, evidenced by phosphorylation of MKP1 and c-Fos activation, key signal transducers in the hyphal invasion response. This profile of microcolony transcriptional regulators more closely reflects Sfl1 and Sfl2 hyphal regulatory networks than static biofilm regulatory networks, suggesting that microcolonies are a specialized pathogenic form of biofilm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。