NMJ-morph reveals principal components of synaptic morphology influencing structure-function relationships at the neuromuscular junction

NMJ-morph 揭示了影响神经肌肉接头结构功能关系的突触形态的主要成分

阅读:12
作者:Ross A Jones, Caitlan D Reich, Kosala N Dissanayake, Fanney Kristmundsdottir, Gordon S Findlater, Richard R Ribchester, Martin W Simmen, Thomas H Gillingwater

Abstract

The ability to form synapses is one of the fundamental properties required by the mammalian nervous system to generate network connectivity. Structural and functional diversity among synaptic populations is a key hallmark of network diversity, and yet we know comparatively little about the morphological principles that govern variability in the size, shape and strength of synapses. Using the mouse neuromuscular junction (NMJ) as an experimentally accessible model synapse, we report on the development of a robust, standardized methodology to facilitate comparative morphometric analysis of synapses ('NMJ-morph'). We used NMJ-morph to generate baseline morphological reference data for 21 separate pre- and post-synaptic variables from 2160 individual NMJs belonging to nine anatomically distinct populations of synapses, revealing systematic differences in NMJ morphology between defined synaptic populations. Principal components analysis revealed that overall NMJ size and the degree of synaptic fragmentation, alongside pre-synaptic axon diameter, were the most critical parameters in defining synaptic morphology. 'Average' synaptic morphology was remarkably conserved between comparable synapses from the left and right sides of the body. Systematic differences in synaptic morphology predicted corresponding differences in synaptic function that were supported by physiological recordings, confirming the robust relationship between synaptic size and strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。