Mechanism of miR-34a in the metabolism of extracellular matrix in fibroblasts of stress urinary incontinence via Nampt-mediated autophagy

miR-34a通过Nampt介导自噬影响压力性尿失禁成纤维细胞细胞外基质代谢的机制

阅读:6
作者:Ying Zhou, Hongjuan Li, Lu Wang

Abstract

Stress urinary incontinence (SUI) is a troublesome hygienic problem that afflicts the female population and is associated with extracellular matrix (ECM). Herein, we investigated the effects of microRNA (miR)-34a on ECM metabolism in fibroblasts of SUI via mediating nicotinamide phosphoribosyl transferase (Nampt/NAmPRTase) and hope to find novel insights in the treatment of SUI. Firstly, the anterior vaginal wall tissues of SUI patients and the female vaginal wall fibroblasts (FVWFs) of non-SUI subjects were collected and identified. Then, FVWFs were treated with 10 ng/mL of interleukin 1 beta (IL-1β) to establish SUI cell models. Subsequently, miR-34a and Nampt expressions in both types of cells were detected via RT-qPCR. It was found that miR-34a was poorly expressed, while Nampt was highly expressed in SUI. Subsequently, IL-1β-treated FVWFs were transfected with miR-34a-mimic and pcDNA3.1-Nampt, respectively. Thereafter, RT-qPCR and Western blot detected that miR-34a overexpression increased COL1A, ACAN, and TIMP-1; decreased MMP-2 and MMP-9; and elevated LC3 II/I ratio, Beclin-1 expression, and the autophagosome number in IL-1β-treated FVWFs, while Nampt upregulation reversed the above outcomes. Then, dual-luciferase reporter gene assay detected that Nampt is a downstream target of miR-34a. Together, miR-34a overexpression promoted autophagy, inhibited ECM degradation in IL-1β-treated FVWFs, and ameliorated SUI via suppressing Nampt.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。