Genetically enhancing the expression of chemokine domain of CX3CL1 fails to prevent tau pathology in mouse models of tauopathy

通过基因手段增强 CX3CL1 趋化因子结构域的表达,无法预防 tau 蛋白病小鼠模型中的 tau 病理

阅读:7
作者:Shane M Bemiller, Nicole M Maphis, Shane V Formica, Gina N Wilson, Crystal M Miller, Guixiang Xu, Olga N Kokiko-Cochran, Ki-Wook Kim, Steffen Jung, Judy L Cannon, Samuel D Crish, Astrid E Cardona, Bruce T Lamb, Kiran Bhaskar

Background

Fractalkine (CX3CL1) and its receptor (CX3CR1) play an important role in regulating microglial function. We have previously shown that Cx3cr1 deficiency exacerbated tau pathology and led to cognitive impairment. However, it is still unclear if the chemokine domain of the ligand CX3CL1 is essential in regulating neuronal tau pathology.

Conclusions

Collectively, our data suggest that overexpression of only chemokine domain of CX3CL1 does not protect against tau pathology.

Methods

We used transgenic mice lacking endogenous Cx3cl1 (Cx3cl1-/-) and expressing only obligatory soluble form (with only chemokine domain) and lacking the mucin stalk of CX3CL1 (referred to as Cx3cl1105Δ mice) to assess tau pathology and behavioral function in both lipopolysaccharide (LPS) and genetic (hTau) mouse models of tauopathy.

Results

First, increased basal tau levels accompanied microglial activation in Cx3cl1105Δ mice compared to control groups. Second, increased CD45+ and F4/80+ neuroinflammation and tau phosphorylation were observed in LPS, hTau/Cx3cl1-/-, and hTau/Cx3cl1105Δ mouse models of tau pathology, which correlated with impaired spatial learning. Finally, microglial cell surface expression of CX3CR1 was reduced in Cx3cl1105Δ mice, suggesting enhanced fractalkine receptor internalization (mimicking Cx3cr1 deletion), which likely contributes to the elevated tau pathology. Conclusions: Collectively, our data suggest that overexpression of only chemokine domain of CX3CL1 does not protect against tau pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。