Cholesterol crystals drive metabolic reprogramming and M1 macrophage polarisation in primary human macrophages

胆固醇晶体驱动人类原代巨噬细胞的代谢重编程和 M1 巨噬细胞极化

阅读:9
作者:Sinead A O'Rourke, Nuno G B Neto, Eimear Devilly, Lianne C Shanley, Hannah K Fitzgerald, Michael G Monaghan, Aisling Dunne

Aims

Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function.

Background and aims

Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function.

Conclusions

This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.

Results

Primary human macrophages were treated with cholesterol crystals and expression of M1 (CXCL9, CXCL10) and M2-associated (MRC1, CCL13) macrophage markers, alarmins, and inflammatory cytokines were assessed either by real-time PCR or ELISA. Cholesterol crystal-induced changes in glycolytic markers were determined using real-time PCR and western blotting, while changes in cellular respiration and mitochondrial dynamics were examined via Seahorse analysis, Fluorescence Lifetime Imaging Microscopy (FLIM) and confocal microscopy. Treatment of macrophages with cholesterol crystals upregulated mRNA levels of CXCL9 and CXCL10, while concomitantly downregulating expression of MRC1 and CCL13. Cholesterol crystal--treated macrophages also exhibited a significant shift in metabolism to favour glycolysis, accompanied by the expression of key glycolytic markers GLUT1, Hexokinase 2, HIF1α, GAPDH and PFKFB3. Furthermore, we show that these effects are mediated upstream by the glycolytic enzyme, PKM2, and that direct inhibition of glycolysis or PKM2 nuclear localisation leads to a significant reduction in cholesterol crystal-induced inflammatory readouts. Conclusions: This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。