3D Interfacial and Spatiotemporal Regulation of Human Neuroepithelial Organoids

人类神经上皮类器官的三维界面和时空调控

阅读:4
作者:Chunling Tang, Xinhui Wang, Mirko D'Urso, Cas van der Putten, Nicholas A Kurniawan

Abstract

Neuroepithelial (NE) organoids with dorsal-ventral patterning provide a useful three-dimensional (3D) in vitro model to interrogate neural tube formation during early development of the central nervous system. Understanding the fundamental processes behind the cellular self-organization in NE organoids holds the key to the engineering of organoids with higher, more in vivo-like complexity. However, little is known about the cellular regulation driving the NE development, especially in the presence of interfacial cues from the microenvironment. Here a simple 3D culture system that allows generation and manipulation of NE organoids from human-induced pluripotent stem cells (hiPSCs), displaying developmental phases of hiPSC differentiation and self-aggregation, first into NE cysts with lumen structure and then toward NE organoids with floor-plate patterning, is established. Longitudinal inhibition reveals distinct and dynamic roles of actomyosin contractility and yes-associated protein (YAP) signaling in governing these phases. By growing NE organoids on culture chips containing anisotropic surfaces or confining microniches, it is further demonstrated that interfacial cues can sensitively exert dimension-dependent influence on luminal cyst and organoid morphology, successful floor-plate patterning, as well as cytoskeletal regulation and YAP activity. This study therefore sheds new light on how organoid and tissue architecture can be steered through intracellular and extracellular means.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。