Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma

血管内皮生长因子阻断迅速引发神经母细胞瘤中的替代促血管生成途径

阅读:5
作者:Nibal Zaghloul, Sonia L Hernandez, Jae-O Bae, Jianzhong Huang, Jason C Fisher, Alice Lee, Angela Kadenhe-Chiweshe, Jessica J Kandel, Darrell J Yamashiro

Abstract

Most children with neuroblastoma presenting after infancy have metastatic, chemoresistant disease. Amplification of the MYCN proto-oncogene is a significant marker of these poor-prognosis neuroblastoma tumors. Recent studies suggest that MYCN may function in part by promoting angiogenesis via vascular endothelial growth factor (VEGF). VEGF blockade has been validated as a therapeutic strategy in adult cancers. In these studies, we asked whether inhibition of VEGF signaling via VEGFR2 blockade in established MYCN-amplified neuroblastoma xenografts would: 1) restrict tumor growth; 2) induce hypoxia; and 3) alter tumor vasculature. The MYCN-amplified neuroblastoma human cell line NGP was implanted intrarenally in athymic female mice. After 5 weeks, mice with established tumors were selected, a cohort euthanized to provide day 0 controls, and the rest assigned to receive biweekly injections of DC101 (anti-murine VEGFR2 antibody) or vehicle. DC101 treatment did not inhibit progressive tumor growth in established NGP xenografts. Although tumor vasculature was not significantly disrupted, a modest increase in tumor hypoxia was demonstrated by pimonidazole staining, and expression of a previously described hypoxia metagene was increased by gene set enrichment analysis (GSEA) in DC101-treated tumors. DC101 treatment elicited increased: 1) expression of VEGFR1 and its ligand placental growth factor; and 2) increased Notch activation in tumor vasculature concurrent with expression of the Notch ligand Jagged1. This result suggests that established MYCN-amplified neuroblastoma tumors are relatively VEGF-independent, and display the ability to rapidly up-regulate hypoxia-responsive alternative proangiogenic mechanisms that may stabilize vasculature when VEGF is deficient.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。