Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells

热休克蛋白B1维持细胞质还原状态以抑制H9c2细胞中Hippo通路的激活

阅读:5
作者:Xiehong Liu, Ke Liu, Caiyan Li, Jiaodi Cai, Li Huang, Huan Chen, Hao Wang, Jiang Zou, Meidong Liu, Kangkai Wang, Sipin Tan, Huali Zhang

Abstract

Heat-shock protein B1 (HSPB1) is a multifunctional protein that protects against oxidative stress; however, its function in antioxidant pathways remains largely unknown. Here, we sought to determine the roles of HSPB1 in H9c2 cells subjected to oxidative stress. Using nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, we found that increased HSPB1 expression promoted the reduced states of glutathione reductase (GR), peroxiredoxin 1 (Prx1), and thioredoxin 1, whereas knockdown of HSPB1 attenuated these responses following oxidative stress. Increased HSPB1 expression promoted the activation of GR and thioredoxin reductase. Conversely, knockdown of HSPB1 attenuated these responses following oxidative stress. Importantly, overexpression of HSPB1 promoted the complex formation between HSPB1 and oxidized Prx1, leading to dephosphorylation of STE-mammalian STE20-like kinase 1 (MST1) in H9c2 cells exposed to H2 O 2 , whereas downregulation of HSPB1 induced the opposite results. Mechanistically, HSPB1 regulated the Hippo pathway by enhancing the dephosphorylation of MST1, resulting in reduced phosphorylation of LATS1 and Yes-associated protein (YAP). Moreover, HSPB1 regulated YAP-dependent gene expression. Thus, HSPB1 promoted the reduced state of endogenous antioxidant pathways following oxidative stress in H9c2 cells and improved the redox state of the cytoplasm via modulation of the Hippo signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。