ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart

ATF6 减少心肌缺血/再灌注损伤并连接心脏中的内质网应激和氧化应激信号通路

阅读:4
作者:Jung-Kang Jin, Erik A Blackwood, Khalid Azizi, Donna J Thuerauf, Asal G Fahem, Christoph Hofmann, Randal J Kaufman, Shirin Doroudgar, Christopher C Glembotski

Conclusions

ATF6 serves an important role as a previously unappreciated link between the ER stress and oxidative stress gene programs, supporting a novel mechanism by which ATF6 decreases myocardial I/R damage.

Objective

Here, we examined the effects of blocking the ATF6-mediated ER stress response on ischemia/reperfusion (I/R) in cardiac myocytes and mouse hearts.

Results

Knockdown of ATF6 in cardiac myocytes subjected to I/R increased reactive oxygen species and necrotic cell death, both of which were mitigated by ATF6 overexpression. Under nonstressed conditions, wild-type and ATF6 knockout mouse hearts were similar. However, compared with wild-type, ATF6 knockout hearts showed increased damage and decreased function after I/R. Mechanistically, gene array analysis showed that ATF6, which is known to induce genes encoding ER proteins that augment ER protein folding, induced numerous oxidative stress response genes not previously known to be ATF6-inducible. Many of the proteins encoded by the ATF6-induced oxidative stress genes identified here reside outside the ER, including catalase, which is known to decrease damaging reactive oxygen species in the heart. Catalase was induced by the canonical ER stressor, tunicamycin, and by I/R in cardiac myocytes from wild-type but not in cardiac myocytes from ATF6 knockout mice. ER stress response elements were identified in the catalase gene and were shown to bind ATF6 in cardiac myocytes, which increased catalase promoter activity. Overexpression of catalase, in vivo, restored ATF6 knockout mouse heart function to wild-type levels in a mouse model of I/R, as did adeno-associated virus 9-mediated ATF6 overexpression. Conclusions: ATF6 serves an important role as a previously unappreciated link between the ER stress and oxidative stress gene programs, supporting a novel mechanism by which ATF6 decreases myocardial I/R damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。