Applying cooperative module pair analysis to uncover compatibility mechanism of Fangjis: An example of Wenxin Keli decoction

应用协同模块对分析揭示防己的配伍机制——以稳心颗粒汤为例

阅读:5
作者:Pengqian Wang, Tianmai He, Rui Zheng, Yang Sun, Ruijin Qiu, Xiaoyu Zhang, Yanwei Xing, Hongcai Shang

Aim of the study

Toexplore compatibility mechanism and systematical effects of Fangjis by taking Wenxin Keli decoction (WXKL), a classical Fangji constituted by Codonopsis Radix, PolygonatiRhizoma, Notoginseng Radix Et Rhizoma, Ambrum, and Nardostachyos Radix Et Rhizoma., as example. Main

Conclusion

This strategy provided an overarching view of anti-arrhythmia mechanism of WXKL and its internal compatibility, and may facilitate the understanding of compatibility in Fangjis from the perspectives of modern biology.

Methods

Here, we employed bioinformatics approach, including cluster analysis, cooperative module pair analysis, primary module identification, and proximity examination among target profile of herbs, to investigate compatibility characterization and anti-arrhythmia mechanism of WXKL. Finally, core mechanisms of WXKL were validatedby in vivo experiments.

Results

As a result, we identified 695 putative target proteins and 27 clusters (W-modules) inWXKL target network (W-network), in which W-module 1, 2, 4, 8, 10 were primary modules. The cooperative module pairs were W-module 2 and 4, W-module 2 and 8, and W-module 2 and 1, all of which existed in Codonopsis Radix- or Notoginseng Radix Et Rhizoma.-condition. And Nardostachyos Radix Et Rhizoma only yielded cooperation between W-module 1 and 2. The proximity of herbs' target profiles of Codonopsis Radix and Notoginseng Radix Et Rhizoma were similar, and Nardostachyos Radix Et Rhizoma and Ambrum were similar. For the compatibility framework, Codonopsis Radix general regulated 70.67% targets and majority W-modules (81.48%) as sovereign herb, contributing to primary therapeutic effect, mainly involving neurohormonal regulation, vasomotor, inflammation and oxidative stress. Other herbs assisted Codonopsis Radix to enhance major outcomes through common modules, and acted as complementary roles through unique process including mitotic cell cycle, biosynthetic and catabolic process, etc. Furthermore, WXKL regulated 66.67% hub proteins of arrhythmia-network, 68.18% and 47.37% proteins in primary arrhythmia-module 1 and 2, mainly involving ion channel activity, neurohormonal regulation, and stress response processes, to constitute regulatory network focusing on cardiovascular, renal, nervous system, to reverse the pathological process of arrhythmia. In vivo experiments demonstrated WXKL can attenuate adrenergic activation induced sympathetic atrial fibrillation by inhibiting calmodulin expression (CaM) and ryanodine receptor 2 (RYR2) phosphorylation to regulate neurohormonal action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。