Early-life experiences altered the maturation of the lateral habenula in mouse models, resulting in behavioural disorders in adulthood

早期生活经历改变了小鼠模型中外侧缰核的成熟度,导致成年后出现行为障碍

阅读:4
作者:Tomoya Nakamura, Kohei Kurosaki, Munenori Kanemoto, Masakiyo Sasahara, Hiroyuki Ichijo

Background

Abnormally high activity in the lateral habenula causes anxiety- or depression-like behaviours in animal experimental models. It has also been reported in humans that excessive stress in early life is correlated with the onset of psychiatric disorders in adults. These findings raise the question of whether maturation of the lateral habenula is affected under the influence of early-life experiences, which could govern behaviours throughout life.

Conclusion

In mice, early-life stress in the period P10-20 led to late effects in adulthood: hyperactivity in the lateral habenula and anxiety or depression, indicating differences in neuronal plasticity between stages of lateral habenula maturation.

Methods

We examined the maturation of the lateral habenula in mice based on neuronal activity markers and plastic components: Zif268/Egr1, parvalbumin and perineuronal nets. We examined the effect of early-life stress using repeated maternal deprivation.

Results

First, we found a transient highly sensitive period of the lateral habenula under stress. The lateral habenula matured through 4 stages: postnatal days 1-9 (P1-9), P10-20, around P35 and after P35. At P10-20, the lateral habenula was highly sensitive to stress. We also observed experience-dependent maturation of the lateral habenula. Only mice exposed to chronic stress from P10-20 exhibited changes specific to the lateral habenula at P60: abnormally high stress reactivity shown by Zif268/Egr1 and fewer parvalbumin neurons. These mice showed anxiety- or depression-like behaviours in the light-dark box test and forced swim test. Limitations: The effect of parvalbumin neurons in the lateral habenula on behavioural alterations remains unknown. It will be important to understand the "sensitive period" of the neuronal circuits in the lateral habenula and how the period P10-20 is different from P9 or earlier, or P35 or later.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。