Effect of electrohydrodynamic printing scaffold with different spacing on chondrocyte dedifferentiation

不同间距电流体打印支架对软骨细胞去分化的影响

阅读:6
作者:Xincheng Liu #, Zhao Zhang #, Yubo Shi, Xingxing Meng, Zhennan Qiu, Xiaoli Qu, Jingyi Dang, Yushen Zhang, Liguo Sun, Lei Wang, Dongze Zhu, Zhenzhou Mi, Jiankang He, Hongbin Fan

Background

Osteoarthritis (OA) is a common degenerative disease. Chondrocyte dedifferentiation can accelerate the progress of OA. Three-dimensional printing (3DP) is widely used in tissue regeneration applications. A three-dimensional (3D) culture system with 3D printed scaffolds could reduce the dedifferentiation of chondrocytes during passages, which would be a potential method for chondrocyte expansion.

Conclusions

3D printed scaffolds with 200 µm spacing can inhibit chondrocyte dedifferentiation, providing a basis for the future study of 3D printed scaffolds as an effective method for chondrocyte expansion.

Methods

The viability and proliferation of chondrocytes on scaffolds and effects of scaffolds with 100, 150, 200, 250 or 300 µm spacing on chondrocyte dedifferentiation were analyzed in vitro. The morphology of scaffolds and cell/scaffold constructs was observed by scanning electron microscopy (SEM). Glycosaminoglycan (GAG) was evaluated by Alcian blue staining. The effects of different spacing on chondrocyte dedifferentiation were evaluated by the messenger RNA (mRNA) and protein levels of cartilage-related genes.

Results

With more binding sites, the proliferation and viability of chondrocytes on scaffolds with 100 and 150 µm spacing were better than those with 200, 250 and 300 µm spacing on day 1, but this advantage diminished over time. The histology and quantitative real-time polymerase chain reaction (qRT-PCR) results showed that 200 µm spacing inhibits chondrocyte dedifferentiation better. Conclusions: 3D printed scaffolds with 200 µm spacing can inhibit chondrocyte dedifferentiation, providing a basis for the future study of 3D printed scaffolds as an effective method for chondrocyte expansion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。