Kinetic analysis of de novo centriole assembly in heat-shocked mammalian cells

热休克哺乳动物细胞中从头中心粒组装的动力学分析

阅读:5
作者:In Keol Baek, Yeun Kyu Jang, Tae H Lee, JooHun Lee

Abstract

Mammalian cells are capable of de novo centriole formation after the removal of existing centrioles. This suggests that de novo centriole assembly is repressed in normally duplicating cells to maintain a constant number of centrioles in the cells. However, neither the mechanism of de novo centriole assembly nor that of its hypothesized repression is understood due to the lack of an experimental system. We found that the heat shock (HS; 42°C, 2 h) of mouse embryonic fibroblasts caused the separation of centriole pairs, a transient increase in polo-like kinase (Plk) 4 expression, and the formation of a complex containing γ-tubulin, pericentrin, HS protein (Hsp) 90, and Plk4, in approximately half of the cells. Subsequently, spindle-assembly abnormal protein (Sas) 6, centrosomal protein (Cep) 135, and centrin localized to the complex, and tubulin consequently became polyglutamylated, indicating de novo centriole assembly in the heat-shocked cells. These results suggested that HS-induced de novo centriole assembly could provide an experimental system for further elucidating the regulation of centrosome number in mammalian cells. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。