Effect of heat treatment with different heat transfer modes on the polymerization of tosylate-doped poly(3,4-ethylenedioxythiophene) films

不同传热方式热处理对甲苯磺酸酯掺杂聚(3,4-乙撑二氧噻吩)薄膜聚合的影响

阅读:7
作者:Hyeong Jun Kim, Jei Gyeong Jeon, Ju Hwan Lee, Ju Hyeon Kim, Junho Lee, Gilyong Shin, Tae June Kang

Abstract

In this work, tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:Tos) films are prepared by thermally assisted oxidative polymerization either on a hot plate or in a convection oven. The main difference between these heat treatments is the way heat is transferred (conduction or convection) during polymerization. The surface morphology and structure, doped state, chemical composition, and the changes in the physical and chemical properties of the differently heat-treated films are analyzed using various instrumental methods. The hot plate-treated films exhibit a smooth and dense surface morphology with a low root-mean-square roughness of ~ 5 nm. The films have a quinoid-prevalent thiophene structure with a high electrical conductivity of 575 S/cm. By contrast, the oven-treated films show a rough and porous morphology with a surface roughness ranging from 30 to 80 nm depending on the scanning area, which yields high absorption capacity of more than 90% in the near-infrared range. The oven-treated films show a benzenoid-prevalent structure that provides relatively low electrical conductivity of 244 ± 45 S/cm. As a demonstration of these noticeable changes, PEDOT:Tos films are examined as a photothermal conversion layer to convert light energy to thermal energy, which is converted to electrical energy using a thermoelectric device by covering the films on the device.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。