Mutagenic assessment of chemotherapy and Smac mimetic drugs in cells with defective DNA damage response pathways

化疗和 Smac 模拟药物对具有缺陷 DNA 损伤反应途径的细胞的致突变性评估

阅读:7
作者:Mark A Miles, Christine J Hawkins

Abstract

DNA damaging therapies can spur the formation of therapy-related cancers, due to mis-repair of lesions they create in non-cancerous cells. This risk may be amplified in patients with impaired DNA damage responses. We disabled key DNA damage response pathways using genetic and pharmacological approaches, and assessed the impact of these deficiencies on the mutagenicity of chemotherapy drugs or the "Smac mimetic" GDC-0152, which kills tumor cells by targeting XIAP, cIAP1 and 2. Doxorubicin and cisplatin provoked mutations in more surviving cells deficient in ATM, p53 or the homologous recombination effector RAD51 than in wild type cells, but suppressing non-homologous end joining (NHEJ) by disabling DNA-PKcs prevented chemotherapy-induced mutagenesis. Vincristine-induced mutagenesis required p53 and DNA-PKcs but was not affected by ATM status, consistent with it provoking ATM-independent p53-mediated activation of caspases and CAD, which creates DNA lesions in surviving cells that could be mis-repaired by NHEJ. Encouragingly, GDC-0152 failed to stimulate mutations in cells with proficient or defective DNA damage response pathways. This study highlights the elevated oncogenic risk associated with treating DNA repair-deficient patients with genotoxic anti-cancer therapies, and suggests a potential advantage for Smac mimetic drugs over traditional therapies: a reduced risk of therapy-related cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。