Fucoidan and microtopography on polyvinyl alcohol hydrogels guided axons and enhanced neuritogenesis of pheochromocytoma 12 (PC12) cells

岩藻聚糖和聚乙烯醇水凝胶上的微拓扑结构引导轴突并增强嗜铬细胞瘤 12 (PC12) 细胞的神经突发生

阅读:11
作者:Yuan Yao, Fan Feng, Dency David, Evelyn K F Yim

Abstract

Artificial nerve grafts that support axon growth hold promises in promoting nerve regeneration and function recovery. However, current artificial nerve grafts are insufficient to regenerate axons across long nerve gaps. Specific biochemical and biophysical cues are required to be incorporated to artificial nerve grafts to promote neural cell adhesion and guide neurite outgrowth. Polyvinyl alcohol (PVA) nerve conduits have been clinically approved, but the applicability of PVA nerve conduits is limited to short injuries due to low cell binding. In this study, we explored the incorporation of biochemical cues and topographical cues for promoting neuritogenesis and axon guidance. PVA was conjugated with extracellular matrix proteins and fucoidan, a bioactive sulfated polysaccharide, to improve cell adhesion. Micro-sized topographies, including 1.8 μm convex lenses, 2 μm gratings, and 10 μm gratings were successfully fabricated on PVA by nanofabrication, and the synergistic effects of topography and biochemical molecules on pheochromocytoma 12 (PC12) neuritogenesis and neurite alignment were studied. Conjugated fucoidan promoted the percentage of PC12 with neurite outgrowth from 0% to 2.8% and further increased to 5% by presenting laminin on the surface. Additionally, fucoidan was able to bind nerve growth factor (NGF) on the surface and allow for PC12 to extend neurites in NGF-free media. The incorporation of 2 μm gratings could double the percentage of PC12 with neurite outgrowth and neurite length, and guided the neurites to extend along the grating axis. The work presents a promising strategy to enhance neurite formation and axon guidance, presenting significant value in promoting nerve regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。