Role of microRNA‑375‑3p‑mediated regulation in tinnitus development

microRNA-375-3p 介导的调控在耳鸣发展中的作用

阅读:5
作者:Kyu-Hee Han, Hyeeun Cho, Kyeo-Rye Han, Seog-Kyun Mun, Young-Kook Kim, Ilyong Park, Munyoung Chang

Abstract

Changes in the dorsal cochlear nucleus (DCN) following exposure to noise play an important role in the development of tinnitus. As the development of several diseases is known to be associated with microRNAs (miRNAs/miRs), the aim of the present study was to identify the miRNAs that may be implicated in pathogenic changes in the DCN, resulting in tinnitus. A previously developed tinnitus animal model was used for this study. The study consisted of four stages, including identification of candidate miRNAs involved in tinnitus development using miRNA microarray analysis, validation of miRNA expression using reverse transcription‑quantitative PCR (RT‑qPCR), evaluation of the effects of candidate miRNA overexpression on tinnitus development through injection of a candidate miRNA mimic or mimic negative control, and target prediction of candidate miRNAs using mRNA microarray analysis and western blotting. The miRNA microarray and RT‑qPCR analyses revealed that miR‑375‑3p expression was significantly reduced in the tinnitus group compared with that in the non‑tinnitus group. Additionally, miR‑375‑3p overexpression via injection of miR‑375‑3p mimic reduced the proportion of animals with persistent tinnitus. Based on mRNA microarray and western blot analyses, connective tissue growth factor (CTGF) was identified as a potential target for miR‑375‑3p. Thus, it was inferred that CTGF downregulation by miR‑375‑3p may weaken with the decrease in miRNA expression, and the increased pro‑apoptotic activity of CTGF may result in more severe neuronal damage, contributing to tinnitus development. These findings are expected to contribute significantly to the development of a novel therapeutic approach to tinnitus, thereby bringing about a significant breakthrough in the treatment of this potentially debilitating condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。